





# **BETSI database tutorial**



A database for soil invertebrate biological and ecological traits

Presentation

Data exploration

map


Data request Contribute data

> Tutorial T-SITA

Trait information scanning

Technical documentation

Login









# **Table of contents**

| 1 | Pres  | entation                              | 3  |
|---|-------|---------------------------------------|----|
| 2 | Con   | tribute to database                   | 3  |
|   | 2.1   | Template format                       | 4  |
|   | 2.2   | Field experiment data templates       | 5  |
|   | 2.2.1 | Metadata                              | 7  |
|   | 2.2.2 | Data matrix                           | 7  |
|   | 2.    | 2.2.1 Plot                            | 8  |
|   | 2.    | 2.2.2 Fauna/soil/trait_experiment     | 10 |
|   | 2.2.3 | Back-up                               | 16 |
|   | 2.3   | Literature trait data template        | 16 |
|   | 2.3.1 | Metadata                              | 17 |
|   | 2.3.2 | Data matrix                           | 17 |
|   | 2.3.3 | Back-up                               | 19 |
|   | 2.4   | Template insertion                    | 19 |
|   | 2.5   | Data mistakes                         | 20 |
| 3 | Req   | uest database                         | 21 |
|   | 3.1   | Field experiment data map exploration | 21 |
|   | 3.2   | Field experiment data request         | 24 |
|   | 3.3   | Trait data request                    | 27 |
|   | 3.3.1 | Textual traits                        | 27 |
|   | 3.3.2 | Numerous traits and preferences       | 28 |
|   | 3.3.3 | Final files                           | 29 |
|   | 3 4   | Request on taxonomy                   | 21 |







# 1 Presentation

The BETSI database contains data about traits for soil invertebrate. Users have the possibility to interact with the BETSI database through a web interface. The URL address is: <a href="http://betsi.cesab.org/">http://betsi.cesab.org/</a>. By the interface you can mostly contribute to the database by inserting some data or request data.

# 2 Contribute to database

Templates are files which allow users to put their data in a database compatible format before their insertion in the database.

There are five templates depending on the nature of the data you want to insert (Figure 1). Four of them allow the insertion of data coming from field experiments. It could be data concerning site(s) (=plots) and parcel(s), soil and fauna. Fauna data can be taxonomical inventories or measured trait values from sampled specimens. The fifth template is dedicated to the insertion of trait data coming from literature for which sampling information is missing. For example, trait values are not associated with a site or they are not associated with a number of measured specimens.

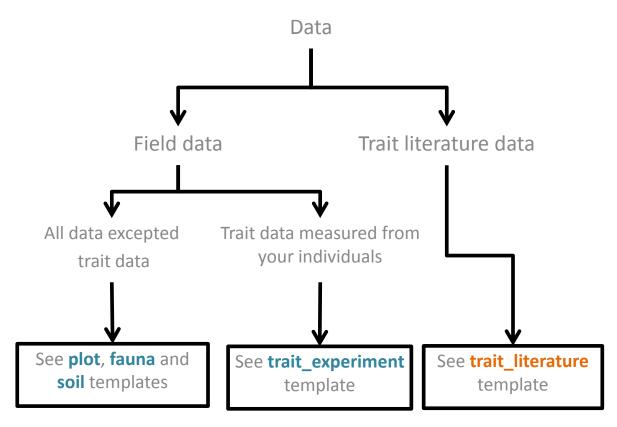



Figure 1. Decisional tree of template choice according to the nature of your data







According to the nature of data you want to insert, please follow the decisional tree to choose the adapted template (Figure 1). The empty templates and examples of filled templates are available on the BETSI FTP server at the following URL: <a href="ftp.cesab.org">ftp.cesab.org</a> following the path: Base de donnees/Templates.

- 140409\_inchargecollector\_datasetname\_plot.csv
- 140409\_inchargecollector\_datasetname\_soil.csv
- 140409 inchargecollector datasetname fauna.csv
- 140409\_inchargecollector\_datasetname\_trait.csv
- 140409\_coder\_datasetname\_trait\_literature.csv

To have access to the FTP server use the identifier: **betsi**; the password: **Tr@1tBets1**; the port: **21**.

# 2.1 Template format

Be careful, when manipulating the templates, <u>always use Open Office</u> or a free open access program which allows the same flexibility. **Do not use Microsoft Excel**. Templates must be saved as **Text CSV (.csv)**, encoded in **UTF-8**, with the **{Tab}** field separator and **no text separator** (Figure 2).

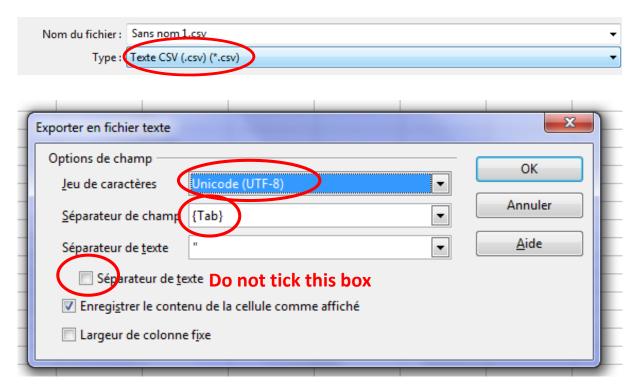



Figure 2. How to respect the format of the templates







# 2.2 Field experiment data templates

All of these templates are designed to insert data coming from field experiments. They could be plot, fauna, fauna trait or soil data. They were designed to match with a unique sampling. It means that it must gather data from a set of parcels, which are associated to a unique source (e.g. an article, a book) on a given time period.

When you want to insert some data coming from field experiments you must fill:

- the plot template (MANDATORY) which gives information on the sampled site(s) and the parcel(s).
- one of the two following templates: fauna or soil. Fauna template contains fauna data except trait data. Soil template contains soil data.
- the trait\_experiment template is NON MANDATORY. It contains trait data which
  have been obtained from fauna samples informed in the fauna template. As a
  consequence, the insertion of the trait\_experiment template requires the fauna
  template insertion.

Respect exactly the **format and universes** from the templates available on the server (csv and ods files available at Base de donnees/templates). Then fill them and delete the parts of the templates as indicated in the following procedures:

• for the plot, fauna, soil and trait \_experiment template, delete the cross-shaped red area after filling the green areas with your data (Figure 3 & Figure 4)

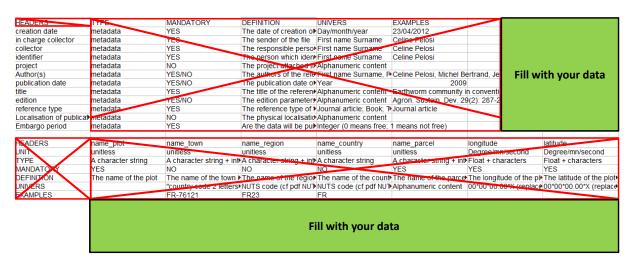
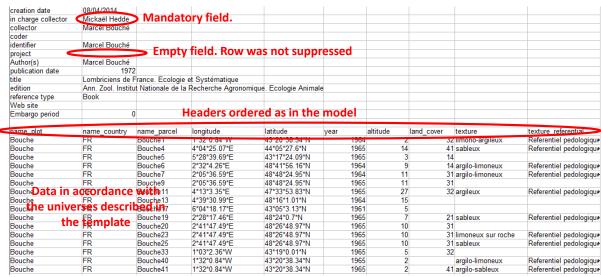




Figure 3. Procedure for deleting parts of the templates (plot, fauna and soil) after filling the green parts with your data









Non mandatory column which you let empty must be deleted. For example « name\_town » does not appear

Figure 4. Example of a final plot template

• for the trait\_experiment template, delete the cross-shaped red area after filling the green areas with your data (Figure 5 1 Figure 6)

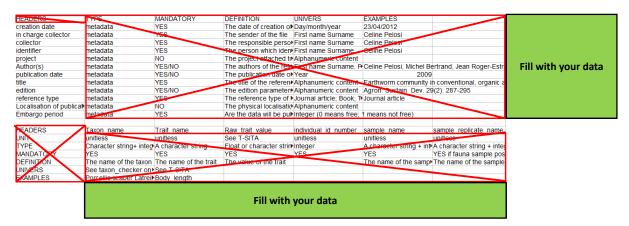



Figure 5. Procedure for deleting parts of the trait\_experiment template after filling the green parts with your data







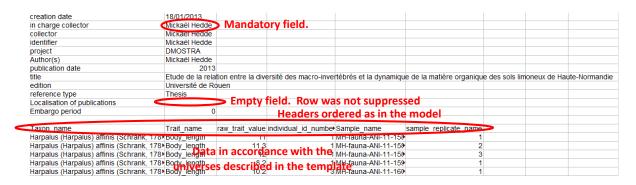



Figure 6. Example of a final trait\_experiment template

Some additional advices are then given.

#### 2.2.1 Metadata

see Figure 4 & Figure 6

- Metadata (first rows before the data matrix) must be **exactly** the same in all the templates coming from a same source (= one sampling)
- Fill the metadata fields in accordance with the **format** and **universe** given for each field. Sometimes no universe or format was specified for a column. Feel free to fill it with the content you want (alphanumeric content).
- Respect the **metadata box format**. You must fill all the mandatory fields. You can fill the non-mandatory fields. If some of them stay empty do not delete rows.
- Fill necessarily the title and reference\_type. Fill the following fields: publication\_date, edition and authors when the reference\_type is: Journal article, Book, Thesis, Conference proceedings, Newspaper article, Book section, Magazine article, Edited book, Report, Manuscript, Conference paper or Classical works. If the reference\_type is different from this list, you can fill these three fields but there are not mandatory any longer.

# 2.2.2 Data matrix

see Figure 4 & Figure 6

- Respect the **headers** of the columns and their **order**
- When a column is mandatory you are obliged to fill it. When a column is nonmandatory you can delete it but without changing the order of other columns.
- Fill the fields in accordance with the **format** and **universe** given for each field. Sometimes no universe or format was specified for a column. Feel free to fill it with the content you want (alphanumeric content)







#### 2.2.2.1 Plot

#### **GPS** coordinates and town names

GPS coordinates must be expressed in the **WGS84 datum** in degree/minute/second. The format is then: 00°00′00.00″X where X is letter indicating a cardinal point. To facilitate the GPS coordinates management in the database, all the special characters must be replaced by \*. The final format is then: **00\*00\*00.00\*X**.

You can use google earth to find the GPS coordinates of your parcel. Before ticking off your parcel, please choose degree/minute/second in the window after clicking on Tools/Options (Figure 7).

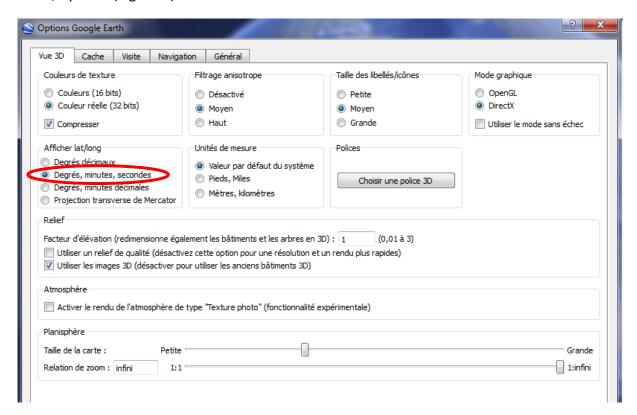



Figure 7. Window of options in google earth software

If you do not have the GPS coordinates of your parcel, enter the GPS coordinates of the centroid of the town including your parcel. You can then use the 'Geolocalisation' tool of the BETSI database interface following the path: Data template support/Geolocalisation. Construct a csv file (UTF-8, tab) with a vertical list of your town names, **only French town names are allowed**. Put a header entitled "town" (Figure 8) with a vertical list of your town names. Then upload it and click on the ok button.









Figure 8. Example of a file of town names before checking by the town file to transform



Figure 9. How to proceed with a file of town names before checking by the town file to transform

The produced file (Figure 10) contains your town name list on the left below the "town" header, the country/INSEE code (name\_town in the template) below the "code" header and the longitude and latitude in the database format. If a cell is empty, it means either that the town name is not in the BETSI database or you write it with too many mistakes (e.g. accent).

| A                    | В        | С            | D             |
|----------------------|----------|--------------|---------------|
| town                 |          | longitude    | latitude      |
| Versailles           | FR-78646 | 2*07*03.88*E | 48*48*06.18*N |
| Rouen                | FR-76540 | 1*05*31.82*E | 49*26*27.16*N |
| Vandoeuvre-lès-nancy | FR-54547 | 6*09*51.49*E | 48*39*27.98*N |
| Villeneuve d'Ascq    | FR-59009 | 3*09*08.50*E | 50*37*56.52*N |
| Montpellier          | FR-34172 | 3*52*05.20*E | 43*36*46.40*N |

Figure 10. A file of town names after transformation by the town file to transform

The 'Geolocalisation' tool allows also you to obtain GPS coordinates and town names from country/INSEE codes.

## Plot measures and year

Plot template contains information on sites and parcels on which fauna and soil samples have been done. Associated measures to a parcel can be there (e.g. temperature\_chronic\_mean\_annual, land\_cover). For each parcel, a year is needed. It indicates when these associated measures have been obtained. They are not constrained by the sampling period (cf. sample\_date\_start or sample\_date\_end of soil or fauna samples). It







can concern a different year of the sampling period. Furthermore, you can insert associated measures from different years for a same parcel. For example (Figure 11), in 1966, pluvio\_chronic\_mean\_annual and temperature\_chronic\_mean\_annual were measured for the parcel "Bouche1". In 1964, only pluvio\_chronic\_mean\_annual was estimated. There could be only a unique measure per year. So if you enter another pluvio\_chronic\_mean\_annual for the parcel "Bouche1" in 1964, only the last value inserted will be memorized.

| name_plot | name_country | name_parcel | longitude   | latitude      | year | pluvio_chronic | _mean_ani | nual | temperature_ | chronic | mean | annual |
|-----------|--------------|-------------|-------------|---------------|------|----------------|-----------|------|--------------|---------|------|--------|
| Bouche    | FR           | Bouche1     | 1*32*0.84*W | 43*20*38.34*N | 1964 |                |           | 200  |              |         |      |        |
| Bouche    | FR           | Bouche1     | 1*32*0.84*W | 43*20*38.34*N | 1966 |                |           | 220  |              |         |      | 25     |

Figure 11. Example of the first columns of a plot template

The plot file must contain all the parcels and their mandatory measures, in which soil or fauna samples have been done.

## 2.2.2.2 Fauna/soil/trait\_experiment

#### Sample names

Samples names (mandatory field sample\_name or the combination of mandatory sample\_name and non\_mandatory sample\_replicate\_name if your replicate identifier is not included in your own sample\_name) must be **unique** in the database. The best way to create unique samples names is to respect the following protocol:

- Put your **first initials** (first name, surname) at the beginning of the sample name
- Sample names must be different from the fauna template to the soil template. After the first initials, put **soil** if the sample concerns the soil template or **fauna** if the sample concerns the fauna template. Put then your **own identifier**. If your own identifier do not distinguish replicates of the same sample, put then the **replicate identifier**.

As a conclusion the final format is: First initial first name First initial surname – fauna or soil – own identifier – (replicate identifier).

For example, if I (Benjamin PEY) want to insert the following fauna sample whose I identified **BIOTECHNOSOL**, I will fill the sample\_name field by: **BP-fauna-BIOTECHNOSOL** in the fauna template.

If I have two replicates for this sample, I have two solutions: either I include my replicate identifier in my sample name: **BP- fauna -BIOTECHNOSOL-1** and **BP- fauna -**







BIOTECHNOSOL-2 and I do not fill the sample\_replicate\_name column (Figure 12). Or I fill two rows with the same sample\_name BP- fauna -BIOTECHNOSOL but I fill the sample\_replicate\_name by 1 on for first row and by 2 for the second row (Figure 12). In both cases, the two replicates must be deployed on two distinct rows.

| sample_name                            | sample_replicate_name |
|----------------------------------------|-----------------------|
| BP-fauna-BIOTECHNOSOL                  | 1                     |
| BP-fauna-BIOTECHNOSOL                  | 2                     |
|                                        |                       |
| sample_name                            | sample replicate name |
| sample_name<br>BP-fauna-BIOTECHNOSOL-1 | sample_replicate_name |

Figure 12. Examples of creation of sample names

Samples names must be **identical** between fauna template and trait\_experiment template in so far as trait data from trait\_experiment template are obtained from specimens coming from the fauna samples.

## **Taxonomy**

The taxonomy used in the BETSI database results from the assembly of several taxonomies such as Fauna Europeae, Taxref and Blackmore. The taxon names in your templates must be exactly the same as those in the database. To test if your name is correct you have two solutions. First you can check taxon name one by one by the **taxon checker**. Go to the Data Request/Taxon checker by the BETSI database interface. Then click on the empty field. Type the first letters of the taxon and then select it on the list. When clicking on it, it appears in the field separated by a semicolumn. Following the semicolumn, you can type another first letters of another taxon and select it on the list (Figure 13).







| Enter taxon name(s) separed by semicolumn for database check          |
|-----------------------------------------------------------------------|
| Lumbricus                                                             |
| .:                                                                    |
| Lumbricus                                                             |
|                                                                       |
| Lumbricus arenarius Muller, 1776                                      |
| Lumbricus canis Werner, 1782                                          |
| Lumbricus castaneus (Savigny 1826)<br>Lumbricus centralis Bouché 1972 |
|                                                                       |
| Lumbricus festivus (Savigny 1826)                                     |
| Lumbricus friendi Cognetti 1804                                       |
| Lumbricus improvisus Zicsi, 1963                                      |
| Lumbricus lacustris Verrill, 1871                                     |
| Lumbricus lineatus Muller, 1774                                       |
| Lumbricus meliboeus Rosa, 1884                                        |
| Lumbricus muris Gmelin, 1790                                          |
| Lumbricus rubellus                                                    |
| Lumbricus rubellus castanoides Bouché 1972                            |
| Lumbricus rubellus friendoides Bouché 1972                            |
|                                                                       |
| nter taxon name(s) separed by semicolumn for database checking        |
| umbricus rubellus castanoides Bouché 1972;                            |
|                                                                       |
|                                                                       |
| Enter taxon name(s) separed by semicolumn for database checki         |
| Lumbricus rubellus castanoides Bouché 1972; Lumbricus                 |
|                                                                       |
| .::                                                                   |
| Lumbricus arenarius Muller, 1776                                      |
| Lumbricus canis Werner, 1782                                          |
| Lumbricus castaneus (Savigny 1826)                                    |
| Lumbricus centralis Bouché 1972                                       |
| nter taxon name(s) separed by semicolumn for database checking        |
| Lumbricus rubellus castanoides Bouché 1972; Lumbricus                 |
| castaneus (Savigny 1826);                                             |
| iii                                                                   |

Figure 13. Operating of the taxon checker box

The second way allows checking several taxons in one go. Construct a csv file (UTF-8, tab) with a vertical list of your taxon names. Put a header entitled "Taxon\_name" (Figure 14).







| A                                                        | В |
|----------------------------------------------------------|---|
| Taxon_name                                               |   |
| Amara (Amara) tibialis (Paykull 1798)                    |   |
| Nebria (Nebria) salina Fairmaire & Laboulbène 1854       |   |
| Nebria (Nebria) brevicollis (Fabricius 1792)             |   |
| Notiophilus rufipes Curtis 1829                          |   |
| Trechus (Trechus) quadristriatus (Schrank 1781)          |   |
| Stomis (Stomis) pumicatus (Panzer 1796)                  |   |
| Poecilus (Poecilus) cupreus (Linnaeus 1758)              |   |
| Poecilus (Poecilus) versicolor (Sturm 1824)              |   |
| Poecilus (Macropoecilus) kugelanni (Panzer 1797)         |   |
| Calathus (Neocalathus) melanocephalus (Linnaeus 1758)    |   |
| Amara (Amara) communis (Panzer 1797)                     |   |
| Amara (Amara) aenea (De Geer 1774)                       |   |
| Anisodactylus (Anisodactylus) binotatus (Fabricius 1787) |   |
| Pseudoophonus (Pseudoophonus) rufipes (De Geer 1774)     |   |
| Harpalus (Harpalus) affinis (Schrank 1781)               |   |
| Harpalus (Harpalus) tardus (Panzer 1797)                 |   |

Figure 14. Example of a file of taxon names before checking by the taxon file to transform

Then upload it by the taxon file to transform and click on the ok button (Figure 15). A file will be produced. Open it.



Figure 15. How to proceed with a file of taxon names before checking by the taxon file to transform

The produced file (Figure 16) contains your taxon name list on the left below the "taxon\_name\_original" header and the corresponding taxon name in the BETSI database below the "taxon\_name\_corrected". If a cell is empty, it means either that the taxon\_name is not in the BETSI database or you write it with too many mistakes (e.g. punctuation). Please check it on the taxon\_checker to find a synonymous or your mistake.







| A                                                        | В                                                         |
|----------------------------------------------------------|-----------------------------------------------------------|
| taxon_name_original                                      | taxon_name_corrected                                      |
| Amara (Amara) tibialis (Paykull 1798)                    | Amara (Amara) tibialis (Paykull, 1798)                    |
| Nebria (Nebria) salina Fairmaire & Laboulbène 1854       |                                                           |
| Nebria (Nebria) brevicollis (Fabricius 1792)             | Nebria (Nebria) brevicollis (Fabricius, 1792)             |
| Notiophilus rufipes Curtis 1829                          | Notiophilus rufipes Curtis, 1829                          |
| Trechus (Trechus) quadristriatus (Schrank 1781)          | Trechus (Trechus) quadristriatus (Schrank, 1781)          |
| Stomis (Stomis) pumicatus (Panzer 1796)                  | Stomis (Stomis) pumicatus (Panzer, 1796)                  |
| Poecilus (Poecilus) cupreus (Linnaeus 1758)              |                                                           |
| Poecilus (Poecilus) versicolor (Sturm 1824)              | Poecilus (Poecilus) versicolor (Sturm, 1824)              |
| Poecilus (Macropoecilus) kugelanni (Panzer 1797)         | Poecilus (Macropoecilus) kugelanni (Panzer, 1797)         |
| Calathus (Neocalathus) melanocephalus (Linnaeus 1758)    |                                                           |
| Amara (Amara) communis (Panzer 1797)                     | Amara (Amara) communis (Panzer, 1797)                     |
| Amara (Amara) aenea (De Geer 1774)                       | Amara (Amara) aenea (De Geer, 1774)                       |
| Anisodactylus (Anisodactylus) binotatus (Fabricius 1787) | Anisodactylus (Anisodactylus) binotatus (Fabricius, 1787) |
| Pseudoophonus (Pseudoophonus) rufipes (De Geer 1774)     | Pseudoophonus (Pseudoophonus) rufipes (De Geer, 1774)     |
| Harpalus (Harpalus) affinis (Schrank 1781)               | Harpalus (Harpalus) affinis (Schrank, 1781)               |
| Harpalus (Harpalus) tardus (Panzer 1797)                 | Harpalus (Harpalus) tardus (Panzer, 1797)                 |

Figure 16. A file of taxon names after transformation by the taxon file to transform

<u>Remark:</u> **Do not use** taxon\_names coming from the Fauna Europeae website, because punctuation was not similar as those of the BETSI database.

#### Methods

We advise you to insert as much as you can a <u>unique combination of</u> <u>extraction type, sampling strategy, chemical product, soil extraction</u> fields for each soil or fauna template.

Indeed, the fauna template must have **different** couple of **extraction\_type** and **sampling\_strategy** fields (e.g. chemical\_extraction/random or Pitfall trap /transect). But for a couple, **chemical\_product** and **soil\_extraction** fields must be **unique**. In other words, you cannot insert in a same template fauna, samples made for example by chemical\_extraction/random but with two chemical products (formalin et AITC). You have to insert them on two different templates.

It is also true for the soil template. Insert as many extraction\_type and sampling\_strategy fields couple you want but with a unique chemical\_product and soil\_extraction fields couple each.

#### **Trait measurements**

The trait\_experiment template allows you to insert trait measures of the fauna individuals you sampled. The trait for which you did some measures must be described in the **T-SITA** (Thesaurus for Soil Invertebrate Trait-based Approaches). To check if it exists in it, go the Data Request/Trait by the BETSI database interface. It must appear in the **numerous** trait part. Please put the **exact label** of the trait from this interface in your template (*e.g.* Body\_length but not Body length or Body-length, Figure 17).







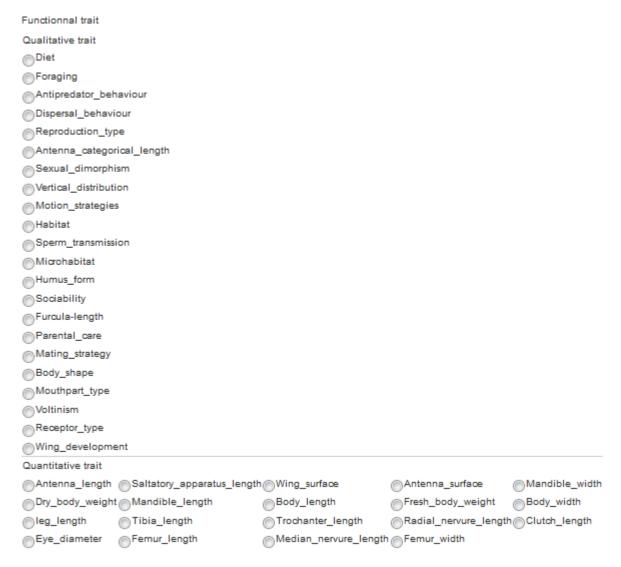



Figure 17. List of traits available on the BETSI database interface (Data request/Trait data)

One crucial thing to understand is that all the **sample names** (or combination of sample\_name and sample\_replicate\_name, see sample\_names part above) you entered in this template must correspond to the sample\_names you enter in the fauna template. Indeed, the trait measures were done on individuals coming from fauna samples. Finally, for a same sample, you could have measured the same trait on several individuals. To contribute to the uniqueness of your measures, please enter the individual\_id\_number. In our example, the user has measured the body\_lenght of two individuals of Harpalus (Harpalus) affinis (Schrank, 1781) from a same sample MH-fauna-ANI-11-158-1 (Figure 18).







| Taxon_name                                  | Trait_name  | raw_trait_value | individual_id_number | Sample_name         | sample_replicate_name |
|---------------------------------------------|-------------|-----------------|----------------------|---------------------|-----------------------|
| Harpalus (Harpalus) affinis (Schrank, 1781) | Body_length | 11              | 1                    | MH-fauna-ANI-11-158 | 1                     |
| Harpalus (Harpalus) affinis (Schrank, 1781) | Body_length | 11.3            | 2                    | MH-fauna-ANI-11-158 | 1                     |
| Harpalus (Harpalus) affinis (Schrank, 1781) | Body_length | 12              | 1                    | MH-fauna-ANI-11-158 | 2                     |
| Harpalus (Harpalus) affinis (Schrank, 1781) | Body_length | 8.2             | 2                    | MH-fauna-ANI-11-158 | 2                     |
| Harpalus (Harpalus) affinis (Schrank, 1781) | Body_length | 10.2            | 1                    | MH-fauna-ANI-11-159 | 1                     |

Figure 18. Example of a trait\_measurement template

#### 2.2.3 Back-up

Before inserting, please name all of your templates following the format:

# Date of dispatch\_Creator name\_Plot name\_template nature.csv

Ex: 130121\_Pelosi\_LaCage\_plot.csv 130121\_Pelosi\_LaCage\_fauna.csv

130121\_Pelosi\_LaCage\_soil.csv

130121\_Pelosi\_LaCage\_trait\_experiment.csv

# 2.3 Literature trait data template

Trait\_literature template is designed to insert trait data which have no enough details (how much individuals were measured, location of samples) to be inserted by the field experiment templates (see above). This template has been designed to insert both numerical and textual information about traits from different sources.

Respect exactly the **format and universes** from the template available on the server (csv and ods files available at Base de donnees/templates). Then fill it and delete the parts of the template as indicated in the following procedure. Delete the cross-shaped red area after filling the green areas with your data (Figure 19 & Figure 20).

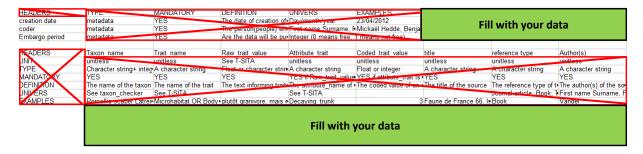



Figure 19. Procedure for deleting parts of the trait\_literature template after filling the green parts with your data







| creation date                      | 30/09/2013    |                                             |                    |                   |                                              |                |                  |
|------------------------------------|---------------|---------------------------------------------|--------------------|-------------------|----------------------------------------------|----------------|------------------|
| coder                              | Florence Dubs |                                             |                    |                   |                                              |                |                  |
|                                    |               |                                             |                    |                   |                                              |                |                  |
| taxon_name                         | Trait_name    |                                             | Attribute_trait    | Coded_trait_value | title                                        | reference type | Author(s)        |
| Porcellio scaber Latreille, 1804   | Microhabitat  | Très commune dansles régions littorales     | Ant_hill           | 2                 | Faune de France 66. Isopodes Terrestres      | Book           | Vandel           |
| Oniscus asellus Linnaeus, 1758     | Microhabitat  | Biotope représenté pasr les forêts de ba    | Anthropic_detritus | 2                 | Faune de France 66. Isopodes Terrestres      | Book           | Vandel           |
| Oniscus asellus Linnaeus, 1758     | Microhabitat  | 0. asellusis a wide-ranging species strop   | Anthropic_detritus | 2                 | Woodlice in britain and Ireland Distribution | Book           | Harding & Sutton |
| Philoscia muscorum (Scopoli, 1763) | Microhabitat  | It has a strong preference for grassy site  |                    |                   | Woodlice and waterlice in Britain and Irela  |                | Gregory          |
| Porcellio scaber Latreille, 1804   | Microhabitat  | Très commune dansles régions littorales     | Anthropic_detritus | 2                 | Faune de France 66. Isopodes Terrestres      | Book           | Vandel           |
| Ligidium hypnorum (Cuvier, 1792)   | Microhabitat  | This hygrophilous species thrives in wat    | Decaying_trunk     | 2                 | Woodlice and waterlice in Britain and Irela  | Book           | Gregory          |
| Oniscus asellus Linnaeus, 1758     | Microhabitat  | Biotope représenté pasr les forêts de ba    | Decaying_trunk     | 2                 | Faune de France 66. Isopodes Terrestres      | Book           | Vandel           |
| Oniscus asellus Linnaeus, 1758     | Microhabitat  | Tolerant of a very wide range of condition  |                    | 3                 | Woodlice                                     | Book           | Oliver, Meechan  |
| Oniscus asellus Linnaeus, 1758     | Microhabitat  | 0. asellusis a wide-ranging species strop   |                    |                   | Woodlice in britain and Ireland Distribution |                | Harding & Sutton |
| Oniscus asellus Linnaeus, 1758     | Microhabitat  | Found under dead logs, dead leaves, and     | Decaying_trunk     | 2                 | Monographs on the Isopods of North Amer      | ▶Book          | Harriet          |
| Philoscia muscorum (Scopoli, 1763) | Microhabitat  | Fort ubiquiste, elle est surtout commune    | Decaying_trunk     | 2                 | Faune de France 66. Isopodes Terrestres      | Book           | Vandel           |
| Philoscia muscorum (Scopoli, 1763) | Microhabitat  | This species is characteristic of ungraze   | Decaying_trunk     | 2                 | Woodlice in britain and Ireland Distribution | Book           | Harding & Sutton |
| Philoscia muscorum (Scopoli, 1763) | Microhabitat  | It has a strong preference for grassy site  | Decaying_trunk     | 2                 | Woodlice and waterlice in Britain and Irela  | Book           | Gregory          |
| Porcellio scaber Latreille, 1804   | Microhabitat  | Diverse, in most habitat types including    | Decaying_trunk     | 3                 | Woodlice                                     | Book           | Oliver, Meechan  |
| Porcellio scaber Latreille, 1804   | Microhabitat  | It was found along the shores of lakes a    | Decaying_trunk     | 3                 | Biology of the Isopoda of Michigan           | Book           | Hatchett         |
| Porcellio scaber Latreille, 1804   | Microhabitat  | It is widely distributed and abundant, four | Decaying_trunk     | 3                 | Woodlice in britain and Ireland Distribution | ▶Book          | Harding & Sutton |
| Porcellio scaber Latreille, 1804   | Microhabitat  | In woodland, grazed grassland and heat      | Decaying_trunk     | 2                 | Woodlice and waterlice in Britain and Irela  | Book           | Gregory          |
| Porcellio scaber Latreille, 1804   | Microhabitat  | Found under dead leaves and stumps, ut      | Decaying_trunk     | 2                 | Monographs on the Isopods of North Amer      | Book           | Harriet          |
| Trichoniscus pusillus Brandt, 1833 | Microhabitat  | Favoured sites include supralittoral coast  | Decaying_trunk     | 2                 | Woodlice and waterlice in Britain and Irela  | Book           | Gregory          |
| Trichoniscus pusillus Brandt, 1833 | Microhabitat  | Humicole typique qui se rencontre dans      | Decaying_trunk     | 2                 | Faune de France 64. Isopodes Terrestres      | Book           | Vandel           |
| Philoscia muscorum (Scopoli, 1763) | Microhabitat  | It has a strong preference for grassy site  | Faeces             | 2                 | Woodlice and waterlice in Britain and Irela  | Book           | Gregory          |

Figure 20. Example of a final trait\_literature template

#### 2.3.1 Metadata

- When you fill the coder field, please respect carefully the **format** "first name surname". If coders are two or more separate them by a comma and order them **alphabetically**.
- Please carefully respect format and universe of metadata fields. If not, data doubloon can be produced. For example if you enter your name as "Benjamin PEY" for information A and you enter the same information A later in another template with another name format "B. PEY", data will be duplicated.
- **Embargo period** (years) allows you to make private the data of your template for the year number you enter from the creation date of your template. During this period, only you have access to the data of the template. After this period, data will be free-available for all users of the BETSI database.

## 2.3.2 Data matrix

- Respect the **headers** of the columns and their **order**
- When a column is mandatory you are obliged to fill it. When a column is nonmandatory do not delete it event if it stays empty.
- The trait for which you want to insert some measures must be described in the T-SITA (Thesaurus for Soil Invertebrate Trait-based Approaches). To check if it exists go the Data Request/Trait by the BETSI database interface. It must appear in the numerous or textual trait parts. Please put the exact label of the trait from this interface in your template (e.g. Body length but not Body length or Body-length)
- Remember that each row must contain fields of the source (title, authors...) which
  identify from which source, data have been derived for informing traits. Fill
  necessarily the title and reference\_type. Fill the following fields: publication\_date,
  edition and authors when the reference\_type is: Journal article, Book, Thesis,







Conference proceedings, Newspaper article, Book section, Magazine article, Edited book, Report, Manuscript, Conference paper or Classical works. If the reference\_type is different from this list, you can fill these three fields but there are not mandatory any longer.

- Fill the fields in accordance with the **format** and **universe** given for each field.
- **Trait units** are available in the T-SITA at the following URL: <a href="http://t-sita.cesab.org/Thesauform/BETSI">http://t-sita.cesab.org/Thesauform/BETSI</a> viz.jsp

When you deal with **numerical** traits, please fill all the fields except the "attribute\_trait" and the "coded\_trait\_value" which must be empty (Figure 21). The "Raw\_trait\_value" field corresponds to the **value** of the numerous trait. Usually one source can present two values for a same trait by taxon (for example Bouché's book presents a minimum and a maximum body length for a species). Insert one value by row by taxon\_name/trait couple. As a consequence if you have two values, insert them on two different rows. In our example, we insert two body lengths (50 and 30) for Ailoscolex lacteospumosus Bouché, 1969 coming from the same source (Bouché, 1972) (invisible on the screen capture, Figure 21).

| creation date                                                 | 09/09/2013                  |                 |                 |                   |
|---------------------------------------------------------------|-----------------------------|-----------------|-----------------|-------------------|
| coder                                                         | Benjamin Pey, Mickael Hedde |                 |                 |                   |
|                                                               |                             |                 |                 |                   |
| Taxon_name                                                    | Trait_name                  | Raw_trait_value | Attribute_trait | Coded_trait_value |
| Ailoscolex lacteospumosus Bouché, 1969                        | Body_length                 | 50              |                 |                   |
| Ailoscolex lacteospumosus Bouché, 1969                        | Body_length                 | 30              |                 |                   |
| Ailoscolex lacteospumosus Bouché, 1969                        | Fresh_body_weight           | 550             |                 |                   |
| Ailoscolex lacteospumosus Bouché, 1969                        | Fresh_body_weight           | 350             |                 |                   |
| Ailoscolex lacteospumosus Bouché, 1969                        | Body_width                  | 9               |                 |                   |
| Ailoscolex lacteospumosus Bouché, 1969                        | Body_width                  | 3               |                 |                   |
| Allolobophora (Gatesona) chaetophora chaetophora Bouché, 1972 | Body_length                 | 190             |                 |                   |
| Allolobophora (Gatesona) chaetophora chaetophora Bouché, 1972 | Body_length                 | 170             |                 |                   |

Figure 21. Example of a trait\_literature template with numerous traits

When you deal with a **textual** trait, fill all the fields (Figure 22). The "Raw\_trait\_value" field corresponds to the original text. This text informs one or several attributes of a trait. By analogy with several values for numerical traits, insert **one row by attribute** for a couple taxon\_name/trait. In our example the same text informs the "litter" and "decaying\_trunk" attributes of the "microhabitat" trait for Ligidium hypnorum (Cuvier, 1792). Search **exact labels of attributes** on the BETSI database interface (Data request/Trait) by clicking on textual traits. All the hierarchical attributes of a trait appear (Figure 23). Then put the **coded value** of each attribute. Fuzzy coding rules are available on the FTP server (see above).

To summarize, in a template and so on for a same coder or a unique coders assembly, several rows can have the same taxon\_name, trait\_name, raw\_trait\_value and source fields







(title, reference\_type, edition, publication\_date, authors) but cannot possess the same attribute\_trait. This avoids that a same coder/unique coders assembly codes information about a trait twice. Otherwise two different coders/ unique coders assembly (necessarily from two templates as one template can have only one coder/coder assembly) can code the same information (same source) about the same trait for a taxon\_name.

| creation date                      | 30/09/2013    |                                                                                   |                 |                   |
|------------------------------------|---------------|-----------------------------------------------------------------------------------|-----------------|-------------------|
| coder                              | Florence Dubs |                                                                                   |                 |                   |
|                                    |               |                                                                                   |                 |                   |
| taxon_name                         | Trait_name    | Raw_trait_value                                                                   | Attribute_trait | Coded_trait_value |
| Ligidium hypnorum (Cuvier, 1792)   | Microhabitat  | This hygrophilous species thrives in waterlogged habitats and is tolerant of temp | Decaying_trunk  | 2                 |
| Ligidium hypnorum (Cuvier, 1792)   | Microhabitat  | This hygrophilous species thrives in waterlogged habitats and is tolerant of temp | Litter          | 2                 |
| Ligidium hypnorum (Cuvier, 1792)   | Microhabitat  | Bord de ruisseaux et des mares, les marécages, les mousses humides etc. Ab        | Moss            | 3                 |
| Ligidium hypnorum (Cuvier, 1792)   | Microhabitat  | Autour des habitations, dans les jardins et dans les forêts humides sous la mou   | Moss            | 3                 |
| Ligidium hypnorum (Cuvier, 1792)   | Microhabitat  | This hygrophilous species thrives in waterlogged habitats and is tolerant of temp | Moss            | 2                 |
| Philoscia muscorum (Scopoli, 1763) | Microhabitat  | Fort ubiquiste, elle est surtout commune dans les bois sous les écorces, les me   | Moss            | 2                 |
| Trichoniscus pusillus Brandt, 1833 | Microhabitat  | Endroits très humides mousse humide des forêts, autour de fontaines, sources      | Moss            | 3                 |

Figure 22. Example of a trait\_literature template with a textual trait



Figure 23. Hierarchized categories of the textual « microhabitat » trait

You can fill both numerical and textual traits in a same template.

# 2.3.3 Back-up

Please name all of your templates following the format:

Date of dispatch\_Creator\_trait\_literature.csv

Ex: 130121 Pelosi trait literature.csv

# 2.4 Template insertion

When you have put your data into the templates, please contact a BETSI database administrator. He will check that all your templates are correct and then insert them into the database.

Contacts: mickael.hedde@versailles.inra.fr

benjamin.pey@versailles.inra.fr







#### 2.5 Data mistakes

After insertion, if you realize that you have made a mistake or you have forgotten to put some information in your template(s), do not worry.

Correct or add/suppress the data in the template(s), except if your mistakes concern the creation\_date, collector or parcel\_name fields for the field experiment templates and the creation\_date and coder fields for the trait\_literature template. When correcting your template(s) please entirely conserve the previous right data.

When correction is done, rename your templates exactly as previously but change the insertion date by the new one (except if you correct the template the same day you insert those with mistakes). Then contact a BETSI database administrator again. He will check that all your templates are correct and then insert them into the database. All of your data will be deleted and replaced by the new ones in the new inserted template(s). Again, that is why it is crucial to **conserve the previous right data** in your new corrected templates.

If you made a mistake on the **creation\_date**, **collector**, **coder** or **parcel\_name** fields please contact first a BETSI database administrator before modifying your templates. Modifications of such fields require other protocols.

In fact, before each data reinsertion, all of your data will be deleted and replaced by the new ones in the new inserted template(s) except for: the **creation\_date**, **collector**, and **parcel\_names** fields for the field experiment templates and the **creation\_date** and **coder** fields for the trait\_literature template.

Futhermore, **measures** characterizing the parcels (*e.g.* pluvio\_chronic\_mean\_annual, land\_cover) were deleted and replaced only if you do not change the corresponding year of the parcel (template plot). Indeed, if you change only the associated measures for a parcel and not the year field, old data will be replaced by the new ones. But if you change the year field of a parcel, **new data will be added but old data will not be deleted**. That mechanism allows having several values of a same measure on several years for a unique parcel (*e.g.* several land\_use on several years for a parcel). For deleting **old data of a parcel**, please contact a BETSI database administrator.







# 3 Request database

Four kinds of requests exist in the database:

- The first one aims at consulting some of the **field experiment data** on fauna (no trait data) and soil data by browsing a **map**.
- The second one aims at consulting the **field experiment data** on fauna (no trait data), soil data and measurement of traits of individuals.
- The third one aims at consulting all the **trait data**. Those data come from literature and from field experiments measurements of trait and of soil.
- The fourth aims at requesting the taxonomy

# 3.1 Field experiment data map exploration

This kind of request aims at exploring some of the data coming from field experiments. Each sample (soil/fauna) inserted in the BETSI database must be linked to a parcel which must have some GPS coordinates. As consequence, each sample is geolocalised.

Go to data "exploration map" by the BETSI database interface. You can then visualize all samples of the BETSI database on a map (Figure 24).

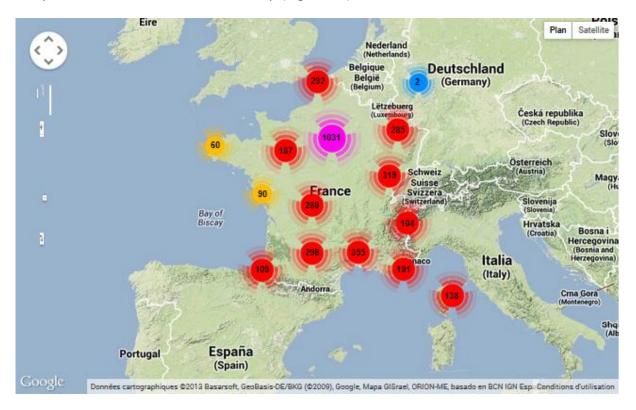



Figure 24. Visualization of samples of the BETSI database on a map







Zoom as much as you can on an entity point on the map. Then if you click on it a window appears. It indicates the details of the samples located at this point. The number is the internal identifier of the sample in the database. When the sample is red written, it is a soil sample. When it is green written it is a fauna sample (Figure 25).

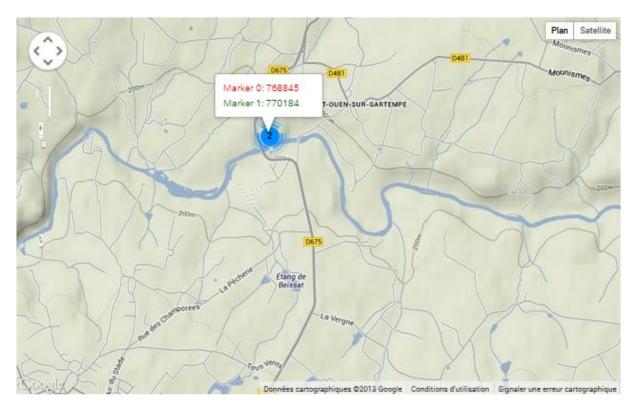



Figure 25. Entity point of the representation of BETSI database samples on the map

If you click on it, a new tab appears. It gives you some information about this sample (Figure 26 & Figure 27).







#### Metadata

In charge collector : Marcel Bouché Collector: Marcel Bouché Creation date: 07/10/2013

Marcel Bouché (1972) Lombriciens de France. Ecologie et Systématique Ann. Zool. Institut Nationale de la Source :

Recherche Agronomique. Ecologie Animale. 671 p.

soil hand sorting

1°03'30.57"E

Latitude : 1°03'30.57"E Longitude : 46°09'39.42"N Plot: Bouche Parcel: Bouche685 Town: Unknown Region : Sampling date start : 21/04/1968 21/04/1968 Sampling date end: Extraction type :

Sample layer: TS Soil extraction : yes Chemical product: по

#### Soil invertebrate

Octolasium cyaneum (Savigny 1826)

Aporrectodea giardi giardi (Ribeaucourt, 1910)

Lumbricus friendi Cognetti 1804

Lumbricus castaneus (Savigny 1826)

Aporrectodea caliginosa caliginosa (Savigny 1826)

# Figure 26. Information given by the map exploration for a fauna sample (green written)

#### Metadata

Latitude :

Marcel Bouché In charge collector: Collector: Marcel Bouché Creation date: 07/10/2013

Marcel Bouché (1972) Lombriciens de France. Ecologie et Systématique Ann. Zool. Institut Nationale de la Source:

Recherche Agronomique. Ecologie Animale. 671 p.

Longitude: 46°09'39.42"N Plot: Bouche Parcel: Bouche685 Unknown Sampling date start: 21/04/1968 Sampling date end: 21/04/1968 Extraction type: soil hand sorting

TS Sample layer:

#### Parcel measures

vegetation (unitless): Pelouse pâturée par des moutons texture referential (unitless): Referentiel pedologique français

texture (unitless): sableux 32 land\_cover (unitless): altitude (m): 23

#### Soil measures

NA (g kg-1): 9 Nitrogen (g kg-1): 3.36 Organic carbon (g kg-1): 31.4 pH (unitless): 5.3







Figure 27. Information given by the map exploration for a soil sample (red written)

# 3.2 Field experiment data request

This kind of request aims at exploring data coming from field experiments. Data will be presented **by parcel** and **by year** you select. Additionally, you can request data from these parcels. Furthermore, you can request fauna (taxonomical inventories or measured trait values from sampled specimens) and soil data sampled in these parcels.

To perform a request on field experiment data, go to Data **Request/Experiment** by the BETSI database interface.

To run a request, you have to select at least one taxon, one contribution type and one data integration type (Figure 28). Taxons can be selected by ticking one or several boxes of soil invertebrate groups or/and by selecting one or several taxon(s) in the "Enter taxon name(s) separated by semicolumn" box. This box works as the taxon\_checker previously described (see part 2.2.2.2 taxonomy). The contribution type indicates the way that fauna from samples was estimated. For example, activity means that fauna came from samples that estimated fauna by their activities. It must be fauna coming from pitfall traps. Finally, the integration type let you the choice of the way you want that fauna data (no trait data) for a parcel and a year will be integrated for the request display.



Figure 28. Taxon, contribution type and data integration type mandatory choices during the request procedure







Then you have to select the year(s) you are interested in. Please **do not** request on **all years** by default. Then you can select some **soil data** (Figure 29).

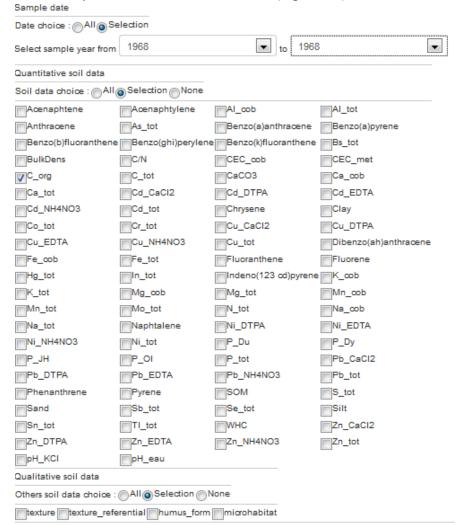



Figure 29. Years and soil data choices during the request procedure

Then you can select **data associated to the parcels**. Finally you can select **trait data** measured from the fauna samples of the parcel(s) sampled during the year and for the soil invertebrates groups you selected (Figure 30).







| Metadata                                                                 |                                                                               |                            |                          |                                 |                                |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|--------------------------|---------------------------------|--------------------------------|--|--|
| Metadata choice :                                                        | All Selection None                                                            |                            |                          |                                 |                                |  |  |
| Plot : All Sele                                                          | ection None                                                                   |                            |                          |                                 |                                |  |  |
| <b>V</b> latitude                                                        | <b></b> ✓ longitude                                                           | nam                        | e_town                   | name_region                     | ✓name_country                  |  |  |
| C_input                                                                  | Crop_system                                                                   | Ferti                      | lisation_chemical        | Fertilisation_manure            | Fertilisation_wastes           |  |  |
| Forest_system                                                            | Grassland_ir                                                                  | ntens Gras                 | sland_use                | IFT_fung                        | IFT_herb                       |  |  |
| IFT_insect                                                               | FT_tot                                                                        | Inter                      | m_aop                    | Irrigation                      | K_input                        |  |  |
| N_input                                                                  | P_input                                                                       | Prev                       | ious_crop                | Prop_legum                      | Prop_pasture                   |  |  |
| Rotation_length                                                          | h Silvi_stadia                                                                | Tilla                      | ge_depth                 | Tillage_freq                    | Tillage_stubplow               |  |  |
| Tillage_type                                                             | UGB                                                                           | altitu                     | ude                      | biotope                         | biotope                        |  |  |
| land_cover                                                               | and_use                                                                       | litho                      | logy                     | pluvio_chronic_mean_annua       | al pluvio_current_mean_annu    |  |  |
| soil_type                                                                | soil_type_re                                                                  | ferential strati           | graphy                   | temperature_chronic_max_annu    | ual temperature_chronic_mean_s |  |  |
|                                                                          |                                                                               |                            |                          |                                 | texture                        |  |  |
| temperature_chror                                                        | nic_min_annualtemperature_c                                                   | urrent_max_annual temper   | ature_current_mean_annua | al temperature_current_min_annu | al lexibre                     |  |  |
| texture_referent                                                         | tial vegetation                                                               | vege                       | tation_age               |                                 |                                |  |  |
| Sample : All (a)                                                         | Selection None                                                                |                            |                          |                                 |                                |  |  |
| Measured trait                                                           |                                                                               |                            |                          |                                 |                                |  |  |
| Do you want that tr                                                      | rait data measured from samplin                                               | ngs appeared in your reque | st?                      |                                 |                                |  |  |
| Trait choice : Al                                                        | II Selection None                                                             |                            |                          |                                 |                                |  |  |
| Antenna_length                                                           | h Saltatory_apparatus_lengt                                                   | h Wing_surface             | Antenna_surface          | Mandible_width                  |                                |  |  |
| Dry_body_weight Mandible_length Body_length Fresh_body_weight Body_width |                                                                               |                            |                          |                                 |                                |  |  |
| leg_length                                                               | leg_length Tibia_length Trochanter_length Radial_nervure_length Clutch_length |                            |                          |                                 |                                |  |  |
| Eye_diameter                                                             | Femur_length                                                                  | Median_nervure_leng        | th Femur_width           |                                 |                                |  |  |
| OK                                                                       |                                                                               |                            |                          |                                 |                                |  |  |

Figure 30. Parcels data and trait measurements data choices during the request procedure

When done, click on the "Ok" button. A window appears. Open or save the file, it is the result of your request (Figure 31). It presents by parcel and by year, all of the data you previously selected (Figure 32).



Figure 31. Window for downloading the result file of the field experiment data request







|                            | name_plot                  | Bouche                 | Bouche                  | Bouche                 | Bouche                 | Bouche                  | Bouche              |      |
|----------------------------|----------------------------|------------------------|-------------------------|------------------------|------------------------|-------------------------|---------------------|------|
|                            | name_parcel                | Bouche264              | Bouche346               | Bouche349              | Bouche350              | Bouche351               | Bouche352           |      |
|                            | Year                       | 1968                   | 1968                    | 1968                   | 1968                   | 1968                    | 1                   | 968  |
|                            | Season                     |                        |                         |                        |                        |                         |                     |      |
| Source information         | Reference                  | Marcel Bouché (1972) L | Marcel Bouché (1972) Li | Marcel Bouché (1972) L | Marcel Bouché (1972) L | Marcel Bouché (1972) Li | Marcel Bouché (1972 | 2) L |
|                            | In charge collector        | Marcel Bouché          | Marcel Bouché           | Marcel Bouché          | Marcel Bouché          | Marcel Bouché           | Marcel Bouché       |      |
| Plot information           | latitude                   | 0*06*41.55*W           | 2*05*36.59*E            | 2*05*36.59*E           | 2*05*36.59*E           | 4*56*47.87*E            | 4*48*41.85*E        |      |
|                            | longitude                  | 45*19*58.63*N          | 48*48*24.95*N           | 48*48*24.95*N          | 48*48*24.95*N          | 47*19*51.45*N           | 47*18*14.25*N       |      |
| Soil information           | ournpro_rayor              |                        | TS                      | TS                     | TS                     | TS                      | TS                  |      |
|                            | integration_type           |                        | median                  | median                 | median                 | median                  | median              |      |
|                            | Organic carbon,C_org, &    |                        | 123.67                  | 7.38                   |                        | 81.48                   | 40                  | 0.83 |
| Soil invertebrate informat | extraction_type            | soil hand sorting      | soil hand sorting       | soil hand sorting      | soil hand sorting      | soil hand sorting       | soil hand sorting   |      |
|                            | observation_type           | abundance              | abundance               | abundance              | abundance              | abundance               | abundance           |      |
|                            | integration_type           | median                 | median                  | median                 | median                 | median                  | median              |      |
|                            | Zophoscolex (Zophosco)     | 0                      | 0                       | 0                      | 0                      | 0                       |                     | (    |
|                            | Zophoscolex (Zophosco)     | 0                      | 0                       | 0                      | 0                      | 0                       |                     | (    |
|                            | Vignysa popi Bouché, 19    |                        | 0                       | 0                      | 0                      | 0                       |                     | - (  |
|                            | Scherotheca (Scherothe     | 0                      | 0                       | 0                      | 0                      | 0                       |                     | (    |
|                            | Scherotheca (Opothedri)    | 7                      | 0                       | 0                      | 0                      | 0                       |                     | (    |
|                            | Proctodrilus antipai voge  |                        | 0                       | 0                      | 0                      | 0                       |                     | - (  |
|                            | Ethnodrilus aveli Bouch    | 0                      | 0                       | 0                      | 0                      | 0                       |                     | - (  |
|                            | Eiseniella tetraedra tetra | 0                      | 0                       | 0                      | 0                      | 0                       |                     | (    |
|                            | Proctodrilus antipai anti  |                        | 0                       | 0                      | 0                      | 0                       |                     | (    |
|                            | Eisenia fetida (Savigny,   |                        | 0                       | 0                      | 9                      | 0                       |                     | (    |
|                            | Diporodrilus pilosus pilo  |                        | 0                       | 0                      | 0                      | 0                       |                     | (    |
|                            | Scherotheca (Opothedri)    |                        | 0                       | 0                      | 0                      | 0                       |                     | (    |
|                            | Phretima diffrengens (Ba   | 0                      | 0                       | 0                      | 0                      | 0                       |                     | (    |

Figure 32. Example of the BETSI\_A file for request on field data for earthworms in 1968

# 3.3 Trait data request

This kind of request aims at obtaining trait affinities by *a priori* defined trait categories per taxon. Such affinities are calculated from all trait data of the database (from literature and field experiment).

To perform a request on trait data, go to Data Request/Trait by the BETSI database interface.

Select at least **one taxon**. Taxons can be selected by ticking one or several boxes of soil invertebrate groups or/and by selecting one or several taxon(s) in the "Enter taxon name(s) separated by semicolumn" box. This box works as the taxon\_checker previously described (see part 2.2.2.2 taxonomy).

Then select **one** and **only one trait** (qualitative or quantitative) or **preference** (soil or site). For **textual** traits, you can choose the accuracy level of the trait categories (Figure 23). When done, click on the "Ok" button.

# 3.3.1 Textual traits

Once you clicked on the "ok" button, a new tab appears which allow you to choose the weighting of sources by clicking either on the "plus" or on the "minus" buttons (Figure 33). The sources are those which bring information about the trait of interest for the soil invertebrate taxons you selected before. When done, click on the "ok" button again.







#### Microhabitat

| Select weighting of sources                                                                                   |   |     |
|---------------------------------------------------------------------------------------------------------------|---|-----|
| (fauna) Vandel (1980) Faune de France 84. Isopodes Terrestres.p.315. [Book]                                   | 1 |     |
| (fauna) Gregory (2009) Woodlice and waterlice in Britain and Ireland.no edition. [Book]                       | 1 | + - |
| (fauna) Oliver, Meechan (1993) Woodlice.Synopses of the British Fauna 49. p.51. [Book]                        | 1 | + - |
| (fauna) Carl (1911) Catalogue des invertébrés de la Suisse.Muséum dhistoire naturelle de Genève. p.36. [Book] | 1 | + - |
| (fauna) Harding & Sutton (1985) Woodlice in britain and Ireland Distribution and habitat.p.94. [Book]         | 1 | + - |
| (fauna) Harriet (1905) Monographs on the Isopods of North Americ.no edition. [Book]                           | 1 | + - |
| (fauna) Vandel (1962) Faune de France 86. Isopodes Terrestres.p.538. [Book]                                   | 1 | + - |
| (fauna) Hatchett (1947) Biology of the Isopoda of Michigan.no edition. [Book]                                 | 1 | + - |
| OK                                                                                                            |   |     |

Figure 33. Example of the weighting of sources of microhabitat trait for isopods

## 3.3.2 Numerous traits and preferences

Once you click on the "ok" button, a new tab appears which allow you to choose (i) the **trait categories boundaries** and their **values** and (ii) the **weighting of sources**.

Numerous traits and preferences are both informed by numerical values in the BETSI database. This window allows you to choose the **boundaries** and the **values** of categories for such traits and preferences. You can click either on the "plus" or on the "minus" buttons to respectively add or delete a boundary. Then put the value of each boundary in the corresponding box (Figure 34). To know the unit of a trait, go the **T-SITA** (Thesaurus for Soil Invertebrate Trait-based Approaches) by the database interface and search the trait of interest.

You can choose the **weighting of sources** by clicking either on the "plus" or on the "minus" buttons (Figure 34). The sources are those which bring information about the trait of interest for the soil invertebrate taxons you selected before.







# Body\_length

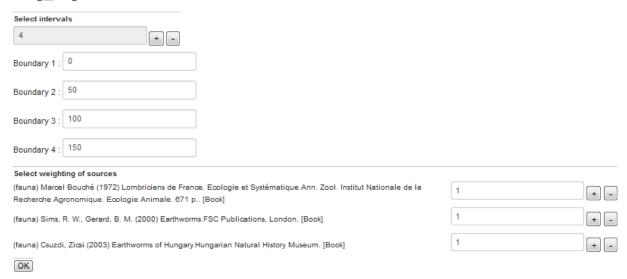



Figure 34. Example of the boundary number and values choices and the weighting of sources of body length trait for earthworms

When done, click on the "ok" button again.

<u>Remark</u>: for the soil and sites preferences, the sources are identified as being a couple of a source concerning fauna and another concerning soil or site (they can be the same or not). Indeed, the term in brackets (soil or fauna, site) inform you on the nature of the data used from this source in your current request.

# 3.3.3 Final files

Once you clicked on the "ok" button, a window appears (Figure 35). Save the archive file, it is the result of your request. It contains two files.









Figure 35. Window for downloading the result archive file of the trait data request

The first 'BETSI\_A' gives you the detailed information that has been extracted for calculating the trait affinities by trait categories for the trait and taxon(s) you selected (Figure 36). The second 'BETSI\_B' gives you the trait affinities by trait categories for the trait and the taxon(s) you selected (Figure 37). The sum of trait affinities by taxon (by row) is equalled to 100%.

| taxon_name                                                    | trait_name  | raw_trait_value | attribute_trait | coded_trait_value | source_soil | source_fauna                                |
|---------------------------------------------------------------|-------------|-----------------|-----------------|-------------------|-------------|---------------------------------------------|
| Ailoscolex lacteospumosus Bouché, 1969                        | Body_length | 30              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Ailoscolex lacteospumosus Bouché, 1969                        | Body_length | 50              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora (Gatesona) chaetophora chaetophora Bouché, 1972 | Body_length | 170             |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora (Gatesona) chaetophora chaetophora Bouché, 1972 | Body_length | 190             |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora (Panoniona) bartoli bartoli (Bouché, 1970)      | Body_length | 60              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora (Panoniona) bartoli bartoli (Bouché, 1970)      | Body_length | 120             |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora burgondiae Bouché, 1972                         | Body_length | 80              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora burgondiae Bouché, 1972                         | Body_length | 75              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora chlorotica chlorotica (Savigny 1826)            | Body_length | 80              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora chlorotica chlorotica (Savigny 1826)            | Body_length | 50              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora chlorotica chlorotica (Savigny 1826)            | Body_length | 80              |                 |                   |             | Sims, R. W., Gerard, B. M. (2000) Earthworm |
| Allolobophora chlorotica chlorotica (Savigny 1826)            | Body_length | 30              |                 |                   |             | Sims, R. W., Gerard, B. M. (2000) Earthworm |
| Allolobophora cupulifera Tétry 1937                           | Body length | 50              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora cupulifera Tétry 1937                           | Body_length | 35              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolobophora moravica Pizl & Houskova, 1993                  | Body_length | 190             |                 |                   |             | Marcel Bouché (1972) Lombriciens de France. |
| Allolohophora moravica Pizl & Houskova, 1993                  | Body Jenath | dt              |                 |                   |             | Marcel Bouché (1972) Lombriciens de France  |

Figure 36. Example of the BETSI\_A file for a trait data request on earthworm body length

| Body_length                                            | [0;50[        | [50;100[     | [100;150[ |
|--------------------------------------------------------|---------------|--------------|-----------|
| Haplotaxis gordioides (Hartman, 1821) (non validé)     | 0             | 0            | 0         |
| Microscolex dubius (Fletcher, 1887)                    | 33.3333333333 | 66.666666667 | 0         |
| Vignysa popi Bouché, 1970                              | 0             | 0            | 0         |
| Hormogaster pretiosa Michaelsen, 1899                  | 0             | 0            | 0         |
| Allolobophora burgondiae Bouché, 1972                  | 0             | 100          | 0         |
| Allolobophora cupulifera Tétry 1937                    | 50            | 50           | 0         |
| Allolobophora moravica Pizl & Houskova, 1993           | 0             | 25           | 75        |
| Allolobophora oculata (Hoffmeister, 1843) (non validé) | 33.3333333333 | 66.666666667 | 0         |
| Allolobophora pereli Bouché, 1972                      | 33.3333333333 | 66.666666667 | 0         |
| Microscolex phosphoreus (Dugès, 1837) (non validé)     | 100           | 0            | 0         |
| Allolobophora satchatelli Bouché, 1972 (non validé)    | 50            | 50           | 0         |
| Allolobophora tiginosa Bouché, 1972                    | 0             | 100          | 0         |
| Allolobophora zicsii Bouché, 1972                      | 0             | 100          | 0         |

Figure 37. Example of the BETSI\_B file for a trait data request on earthworm body length







# 3.4 Request on taxonomy

This kind of request aims at exploring the taxonomy inserted in the BETSI database. To perform a request on taxonomical data, go to Data Request/Taxon checker. The working of the taxon checker has been already explained din the part 2.2.2.2 taxonomy.







# Figure contents

| Figure 1. Decisional tree of template choice according to the nature of your data            | 3     |
|----------------------------------------------------------------------------------------------|-------|
| Figure 2. How to respect the format of the templates                                         | 4     |
| Figure 3. Procedure for deleting parts of the templates (plot, fauna and soil) after filling | the   |
| green parts with your data                                                                   | 5     |
| Figure 4. Example of a final plot template                                                   | 6     |
| Figure 5. Procedure for deleting parts of the trait_experiment template after filling the g  | reen  |
| parts with your data                                                                         | 6     |
| Figure 6. Example of a final trait_experiment template                                       | 7     |
| Figure 7. Window of options in google earth software                                         | 8     |
| Figure 8. Example of a file of town names before checking by the town file to transform      | 9     |
| Figure 9. How to proceed with a file of town names before checking by the town fil           | e to  |
| transform                                                                                    | 9     |
| Figure 10. A file of town names after transformation by the town file to transform           | 9     |
| Figure 11. Example of the first columns of a plot template                                   | 10    |
| Figure 12. Examples of creation of sample names                                              | 11    |
| Figure 13. Operating of the taxon checker box                                                | 12    |
| Figure 14. Example of a file of taxon names before checking by the taxon file to transforn   | า. 13 |
| Figure 15. How to proceed with a file of taxon names before checking by the taxon file       | le to |
| transform                                                                                    | 13    |
| Figure 16. A file of taxon names after transformation by the taxon file to transform         | 14    |
| Figure 17. List of traits available on the BETSI database interface (Data request/Trait data | ) 15  |
| Figure 18. Example of a trait_measurement template                                           | 16    |
| Figure 19. Procedure for deleting parts of the trait_literature template after filling the g | reen  |
| parts with your data                                                                         | 16    |
| Figure 20. Example of a final trait_experiment template                                      | 17    |
| Figure 21. Example of a trait_literature template with numerous traits                       | 18    |
| Figure 22. Example of a trait_literature template with a textual trait                       | 19    |
| Figure 23. Hierarchized categories of the textual « microhabitat » trait                     | 19    |
| Figure 24. Visualization of samples of the BETSI database on a map                           | 21    |
| Figure 25. Entity point of the representation of BETSI database samples on the map           | 22    |
| Figure 26. Information given by the map exploration for a fauna sample (green written)       | 23    |
| Figure 27. Information given by the map exploration for a soil sample (red written)          | 24    |
| Figure 28. Taxon, contribution type and data integration type mandatory choices during       |       |
| request procedure                                                                            | 24    |
| Figure 29. Years and soil data choices during the request procedure                          | 25    |







| Figure 30. Parcels data and trait measurements data choices during the request procedure 26                |
|------------------------------------------------------------------------------------------------------------|
| Figure 31. Window for downloading the result file of the field experiment data request $26$                |
| Figure 32. Example of the <code>BETSI_A</code> file for request on field data for earthworms in 1968 $27$  |
| Figure 33. Example of the weighting of sources of microhabitat trait for isopods28                         |
| Figure 34. Example of the boundary number and values choices and the weighting of sources                  |
| of body length trait for earthworms29                                                                      |
| Figure 35. Window for downloading the result archive file of the trait data request 30                     |
| Figure 36. Example of the <code>BETSI_A</code> file for a trait data request on earthworm body length $30$ |
| Figure 37. Example of the BETSI B file for a trait data request on earthworm body length 30                |







# **Drafting of the document:**

Benjamin Pey, Baptiste Laporte et Mickaël Hedde